Terrafirma: a Pan-European Terrain motion hazard information service

www.terrafirma.eu.com

The Future of Terrafirma - Wide Area Product
Nico Adam and Alessandro Parizzi
DLR Oberpfaffenhofen
Terrafirma User Workshop, Essen, 22 March 2011
Introduction

• What is the Wide Area Product (WAP)?
• Challenges in processing wide areas
• Summary
What is the WAP?

- **Subsidence monitoring product with Pan-European coverage**

- **It is a mosaic of single full fame stacks**
 - 100 Km x 100 Km per stack for actual sensors e.g. ERS and
 - 250 Km x 250 Km per stack for Sentinel-1 interferometric wide swath mode.

- **It is based on PSI**
 - long time phase stable point scatterers are used for the estimation,
 - no use of additional distributed scatterers or SBAS processing,
 - the deformation information is irregular sampled,
 - the quality of the estimate varies spatially (e.g. quality is reduced over rural areas) and
 - in some areas the deformation information can be missing.
What is the WAP?

- **Subsidence monitoring product with Pan-European coverage**

- **It is a mosaic of single full fame stacks**
 - 100 Km x 100 Km per stack for actual sensors e.g. ERS and
 - 250 Km x 250 Km per stack for Sentinel-1 interferometric wide swath mode.

- **It is based on PSI**
 - long time phase stable point scatterers are used for the estimation,
 - no use of additional distributed scatterers or SBAS processing,
 - the deformation information is irregular sampled,
 - the quality of the estimate varies spatially (e.g. quality is reduced over rural areas) and
 - in some areas the deformation information can be missing.
What is the WAP?

- **It is easy to interpret**
 - estimated and provided motion is restricted to a linear deformation model.
 - it maintains high resolution information (i.e. no spatial averaging of persistent scatterers)
 - each point is characterised by:
 - latitude,
 - longitude,
 - PS height with respect to the World Geodetic System 1984 (WGS 84),
 - the average velocity and
 - a quality indicator.

- **It includes a preview**
 - for the characterisation of the test site.
 - map can be reduced in resolution.
 - could be named motion zone map.

PU

std. dev. of slope uncertainty: 0.3 mm/y
What is the WAP?

• **It is easy to interpret**
 – estimated and provided motion is restricted to a linear deformation model.
 – it maintains high resolution information (i.e. no spatial averaging of persistent scatterers)
 – each point is characterised by:
 • latitude,
 • longitude,
 • PS height with respect to the World Geodetic System 1984 (WGS 84),
 • the average velocity and
 • a quality indicator.

• **It includes a preview**
 – for the characterisation of the test site.
 – map can be reduced in resolution.
 – could be named motion zone map.

std. dev. of slope uncertainty: 0.3 mm/y

0.3 mm

1 year
What is the WAP?

• **It is easy to interpret**
 – estimated and provided motion is restricted to a linear deformation model.
 – it maintains high resolution information (i.e. no spatial averaging of persistent scatterers)
 – each point is characterised by:
 • latitude,
 • longitude,
 • PS height with respect to the World Geodetic System 1984 (WGS 84),
 • the average velocity and
 • a quality indicator.

• **It includes a preview**
 – for the characterisation of the test site.
 – map can be reduced in resolution.
 – could be named motion zone map.
What is the WAP?

- **It is easy to interpret**
 - estimated and provided motion is restricted to a linear deformation model.
 - it maintains high resolution information (i.e. no spatial averaging of persistent scatterers)
 - each point is characterised by:
 - latitude,
 - longitude,
 - PS height with respect to the World Geodetic System 1984 (WGS 84),
 - the average velocity and
 - a quality indicator.

- **It includes a preview**
 - for the characterisation of the test site.
 - map can be reduced in resolution.
 - could be named motion zone map.
What is the WAP?

• It does not deliver internal data e.g.:
 – Time series,
 – Atmospheric correction,
 – DEM updates.

• It combines acquisitions taken from one path direction alone
 – No combination of ascending and descending.

• It is automatically generated
 – It is not hand tuned in difficult situations.

• It is reduced in cost compared to the existing Terrafirma H1 product.
 – Currently, 25K€ per stack of 100 Km x 100 Km.
 – Processing costs are subject of optimization in order to lower the price in the future.
What is the WAP?

- **It does not deliver internal data e.g.:**
 - Time series,
 - Atmospheric correction,
 - DEM updates.

- **It combines acquisitions taken from one path direction alone**
 - No combination of ascending and descending.

- **It is automatically generated**
 - It is not hand tuned in difficult situations.

- **It is reduced in cost compared to the existing Terrafirma H1 product.**
 - Currently, 25K€ per stack of 100 Km x 100 Km.
 - Processing costs are subject of optimization in order to lower the price in the future.
What is the WAP?

- Standard product for Sentinel-1
- **Two satellites**
 - Launch of Sentinel-1A envisaged in 2013
 - Launch of Sentinel-1B in 2014+ (few years later)
- Repeat cycle: 12 days (6 days S-1A / S-1B)
- Nominal lifetime: 7 years each
- Sentinel-1: TOPS acquisition mode
What is the WAP?

• Standard product for Sentinel-1

• Sentinel-1: TOPS acquisition mode

• TOPS is an acronym: „Terrain Observation by Progressive Scans“

• Wide swath coverage similar to ScanSAR however:
 – No scalloping (periodical amplitude modulation)
 – No azimuth varying resolution
 – No azimuth varying ambiguity ratio
 – No azimuth varying Noise Equivalent σ_0
Terrafirma: A Pan-European Terrain Motion Hazard Information Service

What is the actual WAP?

- **Standard product for Sentinel-1**

- **Terrafirma provides preview on Sentinel 1 wide area monitoring**
 - Data from ERS instead of Sentinel-1

- **Similar**
 - Resolution
 - Wavelength: C-Band

- **Different**
 - Coverage
 - Incidence angle
 - Repeat cycle: 35 vs. 12/6 days (factor 3|6)
 - TOPS (scan synchronisation)
 - Wavelength: 5.56 vs. 5.55 cm
Challenge in processing wide areas

- **Data amount** (20x20 km → 100x100 km)

- **Difficult atmosphere compensation**
 - Low PS density
 - Spatially varying PS quality

- **Spatial error propagation**

- **Compensation by new techniques**
 - Atmospheric effect mitigation
 - L1 and L2 Norm Network Inversion

- **Robust and operator free processing**
Terrafirma: A Pan-European Terrain Motion Hazard Information Service

Challenge in processing wide areas

- **Data amount** (20x20 km → 100x100 km)
- **Difficult atmosphere compensation**
 - Low PS density
 - Spatially varying PS quality
- **Spatial error propagation**
- **Compensation by new techniques**
 - Atmospheric effect mitigation
 - L1 and L2 Norm Network Inversion
- **Robust and operator free processing**
Challenge in processing wide areas

- Data amount (20x20 km → 100x100 km)

- Difficult atmosphere compensation
 - Low PS density
 - Spatially varying PS quality

- Spatial error propagation

- Compensation by new techniques
 - Atmospheric effect mitigation
 - L1 and L2 Norm Network Inversion

- Robust and operator free processing
 Challenge in processing wide areas

- Data amount (20x20 km → 100x100 km)
- Difficult atmosphere compensation
 - Low PS density
 - Spatially varying PS quality
- Spatial error propagation
- Compensation by new techniques
 - Atmospheric effect mitigation
 - L1 and L2 Norm Network Inversion
- Robust and operator free processing
PSI Reference Network: Least Redundancy

- Three arcs per PS
- Maximum distance: 1km

- Strong error propagation
- Unestimated areas
- High standard deviation
Terrafirma: A Pan-European Terrain Motion Hazard Information Service

PSI Reference Network: High Redundancy

- Ca. 10 arcs per PS
- Maximum distance: 1km

- Huge network matrix
- High memory consumption
- High computational load
New Algorithms: PSI Reference Network

- L1- and L2- norm integration
- Huge number of variables:
 # PSs is # unknown * connectivity is equations
Terrafirma: A Pan-European Terrain Motion Hazard Information Service

Difficulties: Temporal Variability

- Temporal data support
- Trade-off between simple and suitable deformation model
Summary

- **WAP**: Wide Area Product (PSI based)
- **Subsidence monitoring product** with Pan-European coverage
- **Many algorithmic updates**
 - L1- and L2- norm integration
 - Mitigation of atmospheric effects
- **Delivery of preview in summer**